Parabolic Singularly Perturbed Problems with Exponential Layers: Robust Discretizations Using Finite Elements in Space on Shishkin Meshes
نویسنده
چکیده
A parabolic initial-boundary value problem with solutions displaying exponential layers is solved using layer-adapted meshes. The paper combines finite elements in space, i.e., a pure Galerkin technique on a Shishkin mesh, with some standard discretizations in time. We prove error estimates as well for the θ-scheme as for discontinuous Galerkin in time.
منابع مشابه
Numerical method for a system of second order singularly perturbed turning point problems
In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...
متن کاملAn Optimal Uniform a Priori Error Estimate for an Unsteady Singularly Perturbed Problem
We focus ourselves on the analysis of the solution of unsteady linear 2D singularly perturbed convection–diffusion equation. This type of equation can be considered as simplified model problem to many important problems, especially to Navier– Stokes equations. The space discretization of such a problem is a difficult task and it stimulated development of many stabilization methods (e.g. streaml...
متن کاملRobust Solution of Singularly Perturbed Problems Using Multigrid Methods
We consider the problem of solving linear systems of equations that arise in the numerical solution of singularly perturbed ordinary and partial differential equations of reaction-diffusion type. Standard discretization techniques are not suitable for such problems and, so, specially tailored methods are required, usually involving adapted or fitted meshes that resolve important features such a...
متن کاملRobust Solution of Singularly Perturbed Problems Using Multigrid Methods; Analysis and Numerical Results in One and Two Dimensions∗
We consider the problem of solving linear systems of equations that arise in the numerical solution of singularly perturbed ordinary and partial differential equations of reaction-diffusion type. Standard discretization techniques are not suitable for such problems and, so, specially tailored methods are required, usually involving adapted or fitted meshes that resolve important features such a...
متن کاملNumerical approximation of solution derivatives of singularly perturbed parabolic problems of convection-diffusion type
Numerical approximations to the solution of a linear singularly perturbed parabolic problem are generated using a backward Euler method in time and an upwinded finite difference operator in space on a piecewise-uniform Shishkin mesh for a convectiondiffusion problem. A proof is given to show first order convergence of these numerical approximations in appropriately weighted C-norm. Numerical re...
متن کامل